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ization of this type of equations to high dimensional space
is given byNew coarse grid operators are developed for elliptic problems

with highly oscillatory coefficients. The new coarse grid operators
are constructed directly based on the homogenized differential oper- O
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u«(x) 5 f(x), (1.2)ators or hierarchically computed from the finest grid. A detailed

description of this construction is provided. Numerical calculations
for a two-dimensional elliptic model problem show that the homog-

with aj(x, h) strictly positive, continuous, and 1-periodicenized form of the equations is very useful in the design of coarse
in each component of h. For these equations, there existsgrid operators for the multigrid method. A more realistic problem of

heat conduction in a composite structure is also considered. Q 1996 a fairly complete analytic theory, known as the homogeni-
Academic Press, Inc. zation theory, such that a rigorous treatment is possible.

The homogenization theory describes the dependence of
the large scale features in the solutions from the smaller

1. INTRODUCTION scales in the coefficients [2]. We consider problems on the
form (1.1) and there are important practical applicationsThe multigrid method is usually not effective when ap-
of similar equations in the study of elasticity and heatplied to problems for which the standard coarse grid opera-
conduction for composite materials.tors have significantly different properties from those of

By introducing new coarse grid operators, we analyzethe fine grid operators [1, 3, 6, 9, 10]. For some of these
the multigrid method for an equation of type (1.1). Theseproblems, in order to restore the high efficiency of the
new operators are based on either local or analytic homog-multigrid method, the coarse grid operators must be con-
enized operators of the equation and can be numericallystructed on other principles than just simply restricting
calculated from the finest grid operator by solving a so-from the finest grid. Elliptic and parabolic equations with
called cell problem [2]. This approach can be applied instrongly variable coefficients and some hyperbolic equa-
principle to more general cases.tions are such problems. A common feature of these prob-

The rest of the paper is organized as follows. The modellems is that the smallest eigenvalues in absolute value do
problem and homogenization theory are introduced in Sec-not correspond to very smooth eigenfunctions. It is thus not
tion 2. The multigrid method is briefly outlined and aeasy to represent these eigenfunctions on the coarser grids.
detailed description of how to construct our new coarseWe consider two-dimensional elliptic equations with os-
grid operators is provided in Section 3. Numerical experi-cillatory coefficients,
ments are given in Section 4 and a general conclusion is
given in Section 5, where a short discussion about conver-

2= ? a«(x, y)=u« 5 f(x, y),
(1.1) gence theory is also presented.

(x, y) [ V 5 [0, 1] 3 [0, 1].
2. DISCRETIZATION

Here, a«(x, y) 5 a(x/«, y/«) is strictly positive. Because
2.1. Partial Differential Equationsof the small parameter «, the coefficients oscillate. The

parameter « represents the length of oscillation. A general- We consider two-dimensional elliptic equations (1.1)
subject to Dirichlet boundary condition
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max
(x,y)[V

uu« 2 uu R 0, as « R 0, 2.2. Finite Difference Equation

We discretize the domain V into N 3 N equal cells with
(N 2 1) 3 (N 2 1) grid points by taking grid step size hwhere u satisfies the following homogenized equation that
in both the x and y directions to be 1/N. N is chosen todoes not contain any oscillatory coefficient,
make h of the same order as «. Furthermore, as in [4, 6,
7, 10], we assume that the ratio of « to the grid size h is

2A11
­2u
­x2 2 (A12 1 A21)

­2u
­y­x

(2.1)
an irrational number. This assumption is needed in order
to guarantee convergence of the difference operator to the
differential operator in (1.1) [4].2 A22

­2u
­y2 5 f(x, y), (x, y) [ V,

Denote xi 5 ih, yj 5 jh, and

subject to the same boundary condition. The constant coef-
ah

i, j 5 a«Sxi 2
h
2

, yjD ,ficients in (2.1) can be calculated from

bh
i, j 5 a«Sxi , yj 2

h
2D ,Aij 5

1
uVu EV

a(s1 , s2) Sdij 2
­kj

­si
D ds1 ds2 ,

(2.2)

i, j 5 1, 2, f h
i, j 5 fSxi , yjD ,

where A12 5 A21 [12], and the auxiliary periodic functions
for i, j 5 1, ..., N. The standard 5-point finite differencekj are given by
equation of (1.1) at the h-grid level is

2 Di
1ah

i, j Di
2uh

i, j 2 D j
1bh

i, j D j
2uh

i, j 5 f h
i, j , (2.6)2=s ? a(s1, s2)=sk

j 5 2
­a(s1 , s2)

­sj
, j 5 1, 2. (2.3)

where Di
1 and Di

2 are the standard forward and backward
divided differences in the x direction, respectively. Simi-Derivation of (2.1) is based on the asymptotic form
larly, Di

1 and Dj
2 are ones in y direction.

For every j ( j 5 1, ..., N 2 1), define a tridiagonal matrixu« 5 u 1 «u1 1 «2u2 1 ...,
Ah

j and a diagonal matrix Bh
j by

followed by inserting this expansion to (1.1) and then Ah
j 5 [2ah

i21, j , ah
i21, j 1 ah

i, j 1 bh
i, j 1 bh

i, j21 , 2 ah
i, j]i51,...,N21 ,

equating the coefficients of equal powers of «. The details
Bh

j 5 [2bh
i, j]i51,...,N21 .are provided in [2]. For a model problem of type (1.1) with

diagonally oscillatory coefficient,
Expressed in vector notation, (2.6) can be rewritten as

LhUh 5 Fh , (2.7)a«(x, y) 5 aSx
«

,
y
«
D5 gSx 2 y

«
D , (2.4)

where
and the homogenized equation has the simple form

Uh 5 (uh
1,1 , uh

2,1 , ..., uh
N21,1 , ..., uh

1,N21 , uh
2,N21 , ..., uh

N21,N21)T,

Fh 5 ( f h
1,1 , f h

2,1 , ..., f h
N21,1 , ..., f h

1,N21 , f h
2,N21 , ..., f h

N21,N21)T,
2

(e 1 a)
2

­2u
­x2 1 (e 2 a)

­2u
­x ­y

(2.5) and Lh is a block-tridiagonal matrix given by
2

(e 1 a)
2

­2u
­y2 5 f(x, y), (x, y) [ V,

Lh 5
1
h2 [Bh

j21 , Ah
j , Bh

j ] j51,...,N21 . (2.8)

where e 5 m(1/a«)21 and a 5 m(a«) represent the harmonic
3. THE MULTIGRID METHODaverage and the arithmetic average of coefficient a«(x, y),

respectively. Define the mean value m(g) of an «-periodic
3.1. The Algorithmfunction g(x) by

Applications of the two-level multigrid method to Eq.
(2.7) at the nth iteration usually take the following threem(g) 5

1
«
E«

0
g(x) dx.

steps:



298 ENGQUIST AND LUO

1. Presmoothing step. Compute an approximation this form can be approximated locally and therefore adjust
better to local variations. We denote this technique localUn11/2

h by applying c1 steps of a given iteration method to
(2.7) with initial value Un

h on the fine h-grid level. For homogenized coarse grid operator. Finally we describe how
to derive the local numerically homogenized coarse gridconvenience, we introduce the notation:
operator. This is the most general approach and can, as a
procedure, be applied to any elliptic problem; compareUn11/2

h 5 Sc1 (Un
h , Lh , fh);

[5]. The effective coefficients are computed locally based
on the solution of a cell problem and this can be seen as2. Coarse grid correction step. Introduce a coarse H-
a direct extension of the local homogenized coarse gridgrid level and define a coarse grid operator LH on this
operator mentioned above.level, then

• restrict the residual to the coarse H-grid level: 3.2.1. Analytic Homogenized Coarse Grid Operator
dH 5 IH

h ( fh 2 LhUn11/2
h ),

If we construct the coarse grid operator directly from• solve the correction eH : LHeH 5 dH ,
the discretization of the corresponding homogenized oper-• update the approximation by interpolating the cor-
ator in (2.1), we obtain an analytic homogenized coarserection back to the h-grid level: Ũ 5 Un11/2

h 1 Ih
HeH ;

grid operator LH at H-grid level,
3. Postsmoothing step. Repeat step 1 with the approxi-

mation from step 2 as the initial value, LH 5 [2A11Di
1Di

2 2 A22Dj
1Dj

2 (3.2)
2 u(A12 1 A21)Di

0Dj
0]i, j51,...,1/H21 ,

Un11
h 5 Sc2 (Ũ, Lh , fh).

where D0 denotes the standard center divided difference
The iteration operator M of the two-level multigrid method and u is a parameter. For (2.4), LH can be simplified as
is thus given by

M 5 Sc2 (I 2 Ih
H L21

H IH
h Lh)Sc1. (3.1) LH 5 F2

(e 1 a)
2

Di
1Di

2 2
(e 1 a)

2
Dj

1Dj
2

(3.3)
For the full multigrid method, the correction in step 2 is

1 u(e 2 a)Di
0Dj

0G
i, j51,...,1/H21

,solved by applying the two-level multigrid method recur-
sively. The same procedure can be repeated several times
until the coarest level is reached, where the correction

where e, a, and u have constant values through the domain.equation is solved exactly. We always take the current
coarse grid step size to be twice as big as the preceding

3.2.2. Local Homogenized Coarse Grid Operator
one. Let V(c1 , c2) denote the full multigrid cycle with c1

steps as the presmoothing and c2 steps as the post- In order to better approximate the fine grid operator,
smoothing on all levels. we construct a local homogenized coarse grid operator us-

ing the homogenized operator with coefficients generated
3.2. Construction of Coarse Grid Operators locally. To do this, we first divide the entire domain into

many cells. For instance, at point (i, j) on the coarse H-By the homogenized equation and the asymptotic behav-
grid level (see Figs. 1 and 2) we may define four cells,ior of the associated eigenvalue problem [1, 2, 7, 9, 10],
denoted by EH, WH, SH, NH. In each cell, we calculateone can show that the small eigenvalues of the original
a homogenized operator as in (2.1) with coefficients deter-oscillatory operator can be approximated by the corre-
mined in this cell. We then derive a coarse grid operator LHsponding homogenized eigenvalues. After a few steps of
on H-grid level that maintains the form of the homogenizedfine grid smoothing, the error will be dominated by the low
operator but with variable coefficients. LH is of the formfrequency modes and these modes can be approximated by

the corresponding homogenized ones at the coarser grid
LH 5 5 [2Di

1aH
i, j Di

2 2 Dj
1bH

i, j Dj
2 2uDi

0cH
i, j Dj

0 (3.4)level. Based on this idea, we construct the coarse grid
2 uDj

0cH
i, j Di

0]i, j51,...,1/H21 .operator directly from the homogenized operator. Three
different techniques are described below.

The analytic homogenized coarse grid operator is a dis- When the analytic homogenized operator has a simple
form the coefficients can be directly calculated from localcretization of the analytic form (2.1) of the homogenized

operator. This requires the analytic form to be known or values. For the model problem (2.4), the form is given by
(2.5) and the coefficients can be determined as follows.to be computed a priori. If the homogenized equation has

a simple analytic form the effective coefficients following The value of aH
i, j is the coefficient of ­2u/­x2 in the homog-
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mogenized equation (2.1) generated in a SH-cell by (2.2).
For (2.4),

bH
i, j 5 As(e(SH) 1 a(SH)),

where a(SH) and e(SH) denote the arithmetic average
and the harmonic average of all ah

i, j , bh
i, j in a SH-cell, respec-

tively.
The value of cH

i, j is the coefficient of ­2u/­x­y in the
homogenized equation (2.1) generated in cells EH, NH,
SH, WH by (2.2). For (2.4),

cH
i, j 5 As(2e(EH, NH, SH, WH) 1 a(EH, NH, SH, WH)),

where a(EH, NH, SH, WH) and e(EH, NH, SH, WH)
denote the arithmetic average and the harmonic average
of all ah

i, j , bh
i, j in EH, NH, SH, WH-cells, respectively.

FIG. 1. Coefficients for H-grid level at (i, j).
The above locally discrete homogenization procedure is

used for computations in this paper. For other approxima-
tive homogenization techniques we refer the reader to
papers [8, 5] and the section below.enized equation (2.1) generated in a WH-cell by (2.2).

For (2.4),
3.2.3. Local Numerically Homogenized Coarse

Grid OperatoraH
i, j 5 As(e(WH) 1 a(WH)),

For equations of type (1.1), it is not always possible to
obtain Aij in (2.2) explicitly, and the derivation of Aij usu-where a(WH) and e(WH) denote the arithmetic average

and the harmonic average of all ah
i, j , bh

i, j in WH-cell, respec- ally involves numerically solving kj in (2.3). We extend the
construction of the local homogenized coarse grid operatortively.

The value of bH
i, j is the coefficient of ­2u/­y2 in the ho- as follows. Given a H-grid level, let h now denote the fine

FIG. 2. Construction of 4 cells on the coarse H-grid level at point (i, j) with respect to the finest h-grid level at (iL, jL).
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FIG. 3. Cell for the construction of aH
i, j on the H-grid level at (i, j).

grid level that immediately precedes H and let Lh denote w, we construct two more cells as in Fig. 4. These two cells
are based on the extension of the cell in Fig. 3, and thethe operator for the correction at h-grid level defined by
values of k and coefficients in (3.6) at grid points are period-
ically taken as in Fig. 4. Similarly, from the equations forLh 5 [2Di

1ah
i, j Di

2 2 Dj
1bh

i, j Dj
2 1 Di

0ch
i, j Dj

0 (3.5) k at points (2i, 2j) and (2i 2 1, 2j 21) on the h-grid level,
1 Dj

0ch
i, j Di

0]i, j51,...,1/h21 .
we obtain

For the coefficient aH
i, j in (3.4) at a point (i, j) on the coarse 2 (ah

2i,2j 1 ah
2i21,2j 1 bh

2i,2j 1 bh
2j11)u

(3.8)H-grid level, construct a cell as in Fig. 3. Next, define an 1 (bh
2i,2j 1 bh

2i,2j11)w 5 (ah
2i21,2j 2 ah

2i,2j)h,
auxiliary periodic function k over the cell such that it takes

2 (ah
2i21,2j21 1 ah

2i,2j21 1 bh
2i21,2j 1 bh

2i,2j)v (3.9)values u, v, and w on different grid points as indicated in
1 (ah

2i21,2j21 1 ah
2i,2j21)w 5 (ah

2i,2j21 2 ah
2i21,2j21)h.Fig. 3, and 0 at the center. From the homogenization the-

ory, we establish the discretized equation for k at the center
From (3.7)–(3.9), we can solve u, v, and w. Based on thepoint (2i 2 1, 2j) on the h-grid level by
analytic formula [2], we construct the discrete coefficient
aH

i, j on the H-grid level in the cell in Fig. 3 as(Lhk)2i21,2j 5 (2Di
1ah

2i21,2 j Di
2 2 Di

0ch
2i21,2 j Dj

0

2 Dj
0ch

2i21,2 j Di
0 2 Dj

1bh
2i21,2 j Dj

2)k2i21,2 j (3.6)
5 2Di

1ah
2i21,2 j 2 Di

0ch
2i21,2 j . aH

i, j 5 As Sah
2i21,2 j 1 ah

2i,2j 1
(ah

2i21,2j 2 ah
2i,2j)

h
uD .

By assuming the periodicity for ch
2i21,2 j over this cell, we We can construct bH

i, j similarly using the cells and auxiliary
solve (3.6) and get parameters indicated in Fig. 5,

(ah
2i,2j 1 ah

2i21,2j)u 1 (bh
2i21,2j11 1 bh

2i21,2j)y
(3.7) bH

i, j 5 As Sbh
2i,2 j21 1 bh

2i,2j 1
(bh

2i,2j21 2 bh
2i,2j)

h
vD ,5 (ah

2i,2j 2 ah
2i21,2j)h.

In order to establish two more relations among u, v and by solving v from
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FIG. 4. Auxilliary cells for the construction of aH
i, j on the H-grid level at point (i, j).

(Lhk)2i,2j21 5 2Dj
1bh

2i,2j21 2 Dj
0ch

2i,2j21 , where vsw is solved by the construction for aH
i, j , and usw by

the construction for bH
i21/2, j11/2 over cell SW. Similarly, vse ,

(Lhk)2i,2j 5 2Dj
1bh

2i,2j 2 Dj
0ch

2i,2j , use , vnw , unw , vne & une are solved on the different sub-
cells, respectively.(Lhk)2i21,2j21 5 2Dj

1bh
2i21,2j21 2 Dj

0ch
2i21,2j21 .

3.3. Construction of Interpolation
For cH

i, j at point (i, j) on the H-grid level, we first construct
We consider a harmonic interpolation Ih

H in this paper.a cell consisting of four subcells NW, NE, SW, SE as indi-
By the continuity of a«(x, y) (­u«/­x) and a«(x, y) (­u«/­y),cated in Fig. 6. In each subcell, we solve k in the same way
such an interpolation can be constructed as follows (seeas before. Based on the analytic formula [2] for cH

i, j , we
[1]). Setconstruct the discretized cH

i, j over the entire cell in Fig. 6 by

ah
2i21,2j Di

2u h
2i21,2j 5 ah

2i,2j Di
2u H

2i,2j ,
cH

i, j 5 ahA (4ch
2i21,2j 1 (bh

2i21,2j 2 bh
2i21,2j11)vsw

bh
2i,2j21 Dj

2u h
2i,2j21 5 bh

2i,2j Dj
2u H

2i,2j ,1 (ah
2i21,2j 2 ah

2i,2j)usw 1 4ch
2i,2j21

1 (bh
2i,2j21 2 bh

2i,2j)vse 1 (ah
2i,2j21 2 ah

2i11,2j21)use and then solve at points (2i 2 1, 2j) & (2i, 2j 2 1)
1 4ch

2i11,2j 1 (bh
2i11,2j 2 bh

2i11,2j11)vnw

1 (ah
2i11,2j 2 ah

2i12,2j)unw 1 4ch
2i,2j11 uh

2i21,2j 5
ah

2i21,2j uH
2i22,2j 1 ah

2i,2j uH
2i,2j

ah
2i21,2j 1 ah

2i,2j
;

1 (bh
2i,2j11 2 bh

2i,2j12)vne 1 (ah
2i,2j11 2 ah

2i11,2j11)une)
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FIG. 5. Cells for the construction of bH
i, j on the H-grid level at point (i, j).

4. NUMERICAL RESULTS
uh

2i,2j21 5
bh

2i,2j21 uH
2i,2j22 1 bh

2i,2j uH
2i,2j

bh
2i,2j21 1 bh

2i,2j
.

In this section, the multigrid method with the homoge-
nized coarse grid operators and harmonic interpolation
constructed in last section is applied to two examples. We

At point (2i 2 1, 2j 2 1), use the following weighted inter- use these examples to study convergence property of the
polation, V(ci , c2)-cycle multigrid method. For this purpose, we

consider the mean rate r of convergence of the method,
where r is defined by (see [13])

uh
2i21,2j21 5

ah
2i21,2j21 uh

2i22,2j21 1 ah
2i,2j21uh

2i,2j21

1 bh
2i21,2j21 uh

2i21,2j22 1 bh
2i21,2j uh

2i21,2j

ah
2i21,2j21 1 ah

2i,2j21 1 bh
2i21,2j21 1 bh

2i21,2j
,

r 5 SiLhui 2 fhih

iLhu1 2 fhih
D1/(i21)

, (4.1)

where i, j 5 1, ..., N/2 2 1.
For the restriction operator IH

h , we take it to be the where i is the smallest integer satisfying iLhui 2 fhih #
1 3 1029 and i?ih denotes the discrete l2 norm.transpose IH

h 5 (IH
h )T of the prolongation.
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FIG. 6. Cells for the construction of cH
i, j on the H-grid level at point (i, j).

FIG. 7. Interpolation from H-grid level to h-grid level.
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FIG. 8. Spectral radius r as a function of smoothing step c.
FIG. 9. Spectral radius r as a function of a level variable for V(3, 3).

4.1. Example 1: Model Problem means that we only need to apply the local homogenized
coarse grid operator to a few first coarse grid levels, andIn the following numerical experiments, unless other-
then apply the analytic homogenized coarse grid operatorwise noted, we consider Eq. (1.1) with coefficient a«(x, y) 5
to the remaining coarse grid levels. In Fig. 9, we plot the2.1 1 2 sin (2f(x 2 y)/«), where the harmonic average e
spectral radius as a function of a level variable beyondand arithmetic average a are given by
which we switch from the local homogenized coarse grid
operator to the analytic homogenized coarse grid operator.e 5 0.64, a 5 2.1.
This figure shows roughly how the process of eigenmodes
of error in the multigrid method can be reduced. It is clearThe smoothing iteration operator S is based on the follow-
that, after the finest grid level smoothing, there do existing damped Jacobi iteration,
many intermediate eigenmodes which are not quite close
to the homogenized ones. In Fig. 10 we plot the spectral

S 5 I 2 gh2Lh . (4.2) radius as a function of variable u for V(3, 3). From this
figure, we can see as u goes to 1, the convergence of the

The finest grid points are on a 256 3 256 mesh and the
step at the finest grid level h has an irrational relation with
«, i.e., « 5 Ï2h. The step size of the coarest level equals
As, and g in (4.2) is 0.095 which is tested numerically to be
the best. In the numerical experiments, we compare two
cases corresponding to two different values for parameter
u introduced in (3.2) and (3.4). When u 5 1, the coarse
grid operator is the homogenized operator; when u 5 0,
the coarse grid operator is the operator in (3.2) and (3.4)
without cross terms. In the latter case, the coarse grid
operator is no longer the homogenized operator.

For Fig. 8, we apply the local homogenized coarse grid
operator (3.4) to all coarse grid levels. In this figure, the
spectral radius r for V(c, c) is plotted against the smooth-
ing step c. Notice that the rate of convergence for the
multigrid method is faster for u 5 1 than that for u 5 0.
This observation becomes clearer as the smoothing step
gets larger. In fact, after a few coarse grid levels, the local
homogenized coarse grid operator can be replaced with

FIG. 10. Spectral radius r as a function of variable u.the analytic homogenized coarse grid operator (3.2). This
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FIG. 11. Spectral radius r as a fuunction of 1/h. FIG. 12. Spectral radius r as a function of smoothing steps c for V(c,
c). Lines with circle for SOR iteration; otherwise, for Jacobi.

multigrid method can be much improved. In Fig. 11, we
coefficient does not satisfy the periodic assumption whichplot the spectral radius as a function of 1/h for V(3, 3),
is needed in homogenization theory, it preserves somewhere h is the grid step size of the finest level. As shown
essential property as before from a probablistic point ofin this figure, the convergence rate of the multigrid method
view. Namely, it is highly oscillatory in the middle partdoes depend on the grid size h.
of the domain. Standard discretization of the equationTo summarize, we have shown by numerical experiments
contains almost randomly distributed magnitude coeffi-in various aspects that the rate of convergence of the

multigrid method can be much improved with the homoge-
nized operator as the coarse grid operator. Up to this
point, in order to isolate the influence of the coarse grid
approximation we have kept the smoothing operator fixed.
If we use SOR iteration method in (4.2), the convergence
rate can be further improved. We compare the conver-
gence rate by choosing damped Jacobi iteration and SOR
iteration in Fig. 12.

4.2. Example 2: Application

To show the extension of using the homogenized opera-
tor as the coarse grid operator in the multigrid method
to more general cases (e.g., ones involving discontinuous
coefficients) we consider a practical problem described in
Fig. 13 below. The problem can be viewed as a wall with
a composite material for insulation in the center. We are
interested in the heat conduction in such a composite struc-
ture. The governing equation has the form of (1.1) and is
given by

2
­

­x
C(x, y)

­U
­x

2
­

­y
C(x, y)

­U
­y

5 100,

in a rectangular domain (x, y) [ V 5 (0, 1) 3 (0, 2). Here
C(x, y) is the conductivity parameter. Boundary conditions

FIG. 13. Model.and other parameters are given in Fig. 13. Although the
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TABLE I equations with oscillatory coefficients. This conclusion is
supported by the computations.Spectral Radius r

The convergence of the two-level multigrid method with
L 3 4 5 6 7 8 the analytic homogenized coarse grid operator is analyzed in

[7] forelliptic equationswith Dirichletboundary conditions.
Method 1 0.1514 0.3779 0.4005 0.3922 0.4752 0.4832 Without requiring the ratio of h to « to be small, we prove
Method 2 0.1416 0.3084 0.5168 0.5518 0.6358 0.7066

that when both « and h go to zero, as long as they satisfy aMethod 3 0.4596 0.7028 0.8843 0.9595
sampling condition, the two-level multigrid method con-
verges if the iteration number c $ Ch2a ln h. The exponent
a 5 1 1 Ad or 1 1 Sd depending on the problems.

The theoretical proof indicates the role of the homoge-cients by taking « 5 Ï2h. In such a case, the coarse grid
nized operator in the convergence analysis for the multigridoperators can still be generated by a similar idea as intro-
method. Results of numerical experiments show that fasterduced in the previous section. Since the conductivity here
convergence rate in practice can be achieved than thatis strongly varying in x direction, and has two interfaces
guaranteed by theoretical results. However, numerical re-in y direction, the structure of the homogenized operator
sults do indicate that the convergence rate depends on theapproximately has the form
grid size h for equations with oscillatory coefficients.
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